A New Algorithm of Network Intrusion Detection base on the Application of Conditional Random Fields

نویسندگان

  • Jianping Li
  • Siyuan Zhao
چکیده

While the network brings convenience to people, its own fragility offers intrusion opportunities for hackers and malicious attackers. Along with the diversity and complexity of intrusion attack, high performance intrusion detection techniques are required, and so the study of on-line detection, adaptive detection and multiclass detection techniques becomes current hotspot. To improve the performance of multiclass intrusion detection system(IDS), this thesis puts forward a method of CRFs (Conditional Random Fields) based on attribute sets in IDS. This Algorithm uses varied connection information and its relativity in network connection information data sequence as well as the feature sets relativity in data sequence to attack detection and discovery of abnormal phenomenon. In this thesis, after the discussion of the work process of the models and the comparison between KDD cup’99 data sets’ detective conclusion and other test methods. The simulation results show that the proposed algorithm is practicable, reliable and efficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural network

Abstract— In order to provide complete security in a computer system and to prevent intrusion, intrusion detection systems (IDS) are required to detect if an attacker crosses the firewall, antivirus, and other security devices. Data and options to deal with it. In this paper, we are trying to provide a model for combining types of attacks on public data using combined methods of genetic algorit...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

Intrusion Detection Using Conditional Random Fields

Intrusion detection systems have become a key component in ensuring the safety of systems and networks. This paper introduces the probabilistic approach called Conditional Random Fields (CRF) for detecting network based intrusions. In this paper, we have shown results for the issue of accuracy using CRFs. It is demonstrated that high attack detection accuracy can be achieved by using Conditiona...

متن کامل

Intrusion Detection Method Based on Fuzzy Conditional Random Fields ?

Intrusion detection system is the indispensable part of every computer. With the increasing attack means, all kinds of intrusion detection methods have appeared. Compared with other intrusion detection methods, the intrusion detection methods based on Conditional Random Fields (CRFs) has better detection effect, but the problems that the accuracy is low when the training data is small and the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015